Community Discovery from Social Media by Low-Rank Matrix Recovery
نویسندگان
چکیده
منابع مشابه
Low rank matrix recovery from Clifford orbits
We prove that low-rank matrices can be recovered efficiently from a small number of measurements that are sampled from orbits of a certain matrix group. As a special case, our theory makes statements about the phase retrieval problem. Here, the task is to recover a vector given only the amplitudes of its inner product with a small number of vectors from an orbit. Variants of the group in questi...
متن کاملLow rank matrix recovery from rank one measurements
We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaj for some measurement vectors a1, . . . , am, i.e., the measurements are given by yj = tr(Xaja ∗ j ). The case where the matrix X = xx ∗ to...
متن کاملs-Goodness for Low-Rank Matrix Recovery
and Applied Analysis 3 If there does not exist such y for some X as above, we set γ s (A, β) = +∞ and to be compatible with the special case given by [24] we write γ s (A), γ s (A) instead of γ s (A, +∞), γ s (A, +∞), respectively. From the above definition, we easily see that the set of values that γ takes is closed. Thus, when γ s (A, β) < +∞, for every matrix X ∈ Rm×n with s nonzero singular...
متن کاملQuantization for Low-Rank Matrix Recovery
We study Sigma-Delta quantization methods coupled with appropriate reconstruction algorithms for digitizing randomly sampled low-rank matrices. We show that the reconstruction error associated with our methods decays polynomially with the oversampling factor, and we leverage our results to obtain root-exponential accuracy by optimizing over the choice of quantization scheme. Additionally, we sh...
متن کاملUniqueness Conditions For Low-Rank Matrix Recovery
Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractable approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m ≥ Cnr Gaussian measurements are sufficient to recover any rank-r n ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Intelligent Systems and Technology
سال: 2015
ISSN: 2157-6904,2157-6912
DOI: 10.1145/2668110